
Security Audit Report for Ref-Boost-Farm

Date: July 26, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 5
2.1 Software Security . 5

2.1.1 Lost of Farmer’s Reward . 5

2.2 DeFi Security . 6

2.2.1 No Privileged Function for Withdrawal of Beneficiary 6

2.2.2 Improper Allowed State for System Configuration 7

2.2.3 User Controllable Reward with the Change of booster_info 8

2.2.4 Unfair Reward Distribution in Certain Situations . 8

2.3 Additional Recommendation . 10

2.3.1 Improved Sanity Checks for System Parameters 10

2.3.2 Improved Sanity Checks When Removing Operators 10

2.3.3 Potential Elastic Supply Token Problem . 11

2.3.4 Improper Attached Gas . 11

2.3.5 Potential Centralization Problem . 12

i

Report Manifest

Item Description
Client Ref Finance
Target Ref-Boost-Farm

Version History

Version Date Description
1.0 July 26, 2022 First Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The repository that has been audited includes boost-farm 1.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values during the audit are shown

in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well as new

codes (in the following versions) to fix issues in the audit report.

Project Commit SHA

Ref-Boost-Farm
Version 1 28dd78a29df1268d7eaea83c5d7db688b683711
Version 2 fc0cada65253eb1d49bcf4855c92c4ff0791239c

Note that, we did NOT audit all the modules in the repository. The modules covered by this audit

report include contracts/boost-farming folder contract only. Specifically, the files covered in this audit

include:

- actions_of_farmer_reward.rs

- actions_of_farmer_seed.rs

- actions_of_seed.rs

- big_decimal.rs

- booster.rs

- errors.rs

- events.rs

- farmer.rs

- farmer_seed.rs

- legacy.rs

- lib.rs

- management.rs

- owner.rs

- seed.rs

- seed_farm.rs

- storage_impl.rs

- token_receiver.rs

- utils.rs

- view.rs

1https://github.com/ref-finance/boost-farm

1

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

2

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Access control

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Table 1.1: Vulnerability Severity Classification
Im

pa
ct

High High Medium

Low Medium Low

High Low

Likelihood

- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find five potential issues. We also have five recommendations, as follows:

- High Risk: 0

- Medium Risk: 0

- Low Risk: 5

- Recommendations: 5

- Notes: 0

ID Severity Description Category Status
1 Low Lost of Farmer’s Reward Software Security Fixed

2 Low
No Privileged Function for Withdrawal of Ben-
eficiary

DeFi Security Confirmed

3 Low
Improper Allowed State for System Configura-
tion

DeFi Security Confirmed

4 Low
User Controllable Reward with the Change of
booster_info

DeFi Security Confirmed

5 Low Unfair Reward Distribution in Certain Situation DeFi Security Confirmed

6 -
Improved Sanity Checks for System Parame-
ters

Recommendation Fixed

7 -
Improved Sanity Checks When Removing Op-
erators

Recommendation Fixed

8 - Potential Elastic Supply Token Problem Recommendation Confirmed
9 - Improper Attached Gas Recommendation Fixed
10 - Potential Centralization Problem Recommendation Confirmed

The details are provided in the following sections.

2.1 Software Security

2.1.1 Lost of Farmer’s Reward

Status Fixed in Version 2

Introduced by Version 1

Description Function callback_post_withdraw_reward is used to handle the execution result for cross

contract invocation (i.e., ft_tranfer). If function ft_tranfer fails, all the state changes inside the function

withdraw_reward will be recovered. However, the existence of the account (farmer_id) is not checked in

function callback_post_withdraw_reward, which may result in panic and the reward of the account cannot

be recovered.

57 #[private]
58 pub fn callback_post_withdraw_reward(
59 &mut self,
60 token_id: AccountId,
61 farmer_id: AccountId,
62 amount: U128,
63) {

5

64 require!(
65 env::promise_results_count() == 1,
66 E001_PROMISE_RESULT_COUNT_INVALID
67);
68 let amount: Balance = amount.into();
69 match env::promise_result(0) {
70 PromiseResult::NotReady => unreachable!(),
71 PromiseResult::Successful(_) => {
72 Event::RewardWithdraw {
73 farmer_id: &farmer_id,
74 token_id: &token_id,
75 withdraw_amount: &U128(amount),
76 success: true,
77 }
78 .emit();
79 }
80 PromiseResult::Failed => {
81 // This reverts the changes from withdraw function.
82 let mut farmer = self.internal_unwrap_farmer(&farmer_id);
83 farmer.add_rewards(&HashMap::from([(token_id.clone(), amount)]));
84 self.internal_set_farmer(&farmer_id, farmer);
85
86 Event::RewardWithdraw {
87 farmer_id: &farmer_id,
88 token_id: &token_id,
89 withdraw_amount: &U128(amount),
90 success: false,
91 }
92 .emit();
93 }
94 }
95 }

Listing 2.1: contracts/boost-farming/src/actions_of_famrer_reward.rs

Impact The reward of the unregistered account may be lost.

Suggestion I The existence of the farmer_id should be checked in the callback function.

2.2 DeFi Security

2.2.1 No Privileged Function for Withdrawal of Beneficiary

Status Confirmed

Introduced by Version 1

Description The reward of the farm will be assigned to the beneficiary under certain conditions, which

are shown in function finalize. However, there is no function for the beneficiary to withdraw the reward.

73 #[payable]
74 pub fn remove_farm_from_seed(&mut self, farm_id: String) {
75 assert_one_yocto();
76 self.assert_owner();

6

77 require!(self.data().state == RunningState::Running, E004_CONTRACT_PAUSED);
78
79 let (seed_id, _) = parse_farm_id(&farm_id);
80 let mut seed = self.internal_unwrap_seed(&seed_id);
81
82 let VSeedFarm::Current(mut outdated_farm) = seed.farms.remove(&farm_id).expect(

E401_FARM_NOT_EXIST);
83 outdated_farm.finalize();
84
85 self.data_mut().outdated_farms.insert(&farm_id, &outdated_farm.into());
86 self.internal_set_seed(&seed_id, seed);
87 self.data_mut().farm_count -= 1;
88 }

Listing 2.2: contracts/boost-farming/src/actions_of_seed.rs

165 pub fn finalize(&mut self) {
166 require!(self.has_ended(), E405_FARM_NOT_ENDED);
167 // remaining unclaimed rewards belongs to beneficiary
168 self.amount_of_beneficiary =
169 self.distributed_reward - self.claimed_reward;
170}

Listing 2.3: contracts/boost-farming/src/seed_farm.rs

Impact The unclaimed reward will be locked in the contract.

Suggestion I It is suggested to implement the privileged functions to handle the locked rewards.

Feedback from the Project We will implement corresponding withdraw interface in the future.

2.2.2 Improper Allowed State for System Configuration

Status Confirmed

Introduced by Version 1

Description The administrator can set the system configurations (e.g., daily_reward) via the privileged

functions (e.g., modify_daily_reward). However, these priviledged functions can only be invoked when

the state of the contract is Running. Considering the emergency cases, it is suggested to allow the admin-

istrator to set the system configuration in the state of Paused as well.

7 #[payable]
8 pub fn modify_daily_reward(&mut self, farm_id: FarmId, daily_reward: U128) {
9 assert_one_yocto();

10 require!(self.is_owner_or_operators(), E002_NOT_ALLOWED);
11 require!(self.data().state == RunningState::Running, E004_CONTRACT_PAUSED);
12
13 let (seed_id, _) = parse_farm_id(&farm_id);
14 let mut seed = self.internal_unwrap_seed(&seed_id);
15
16 let VSeedFarm::Current(seed_farm) = seed.farms.get_mut(&farm_id).expect(E401_FARM_NOT_EXIST

);
17 seed_farm.terms.daily_reward = daily_reward.0;
18

7

19 self.internal_set_seed(&seed_id, seed);
20 }

Listing 2.4: contracts/boost-farming/src/management.rs

Impact The system configuration can be used to patch the vulnerabilities of the contract. In this case,

setting the system configurations in Running state can leave the contract under the risk of attack.

Suggestion I Allow the administrator to set the system configurations in the state of Paused as well.

Feedback from the Project The contract state PAUSE is for emergency only, the contract state is ex-

pected to be untouched then. And those manage interfaces like modify_daily_reward are designed to be

safe to execute when contract is in RUNNING state.

2.2.3 User Controllable Reward with the Change of booster_info

Status Confirmed

Introduced by Version 1

Description Function modify_booster can change the booster_info for corresponding booster_id, which

can affect the value of the seed_power. However, the new seed_power, which can influence the amount of

the reward, will not be updated until the user claims the reward.

20 #[payable]
21 pub fn modify_booster(&mut self, booster_id: SeedId, booster_info: BoosterInfo) {
22 assert_one_yocto();
23 require!(self.is_owner_or_operators(), E002_NOT_ALLOWED);
24 require!(self.data().state == RunningState::Running, E004_CONTRACT_PAUSED);
25 require!(self.internal_get_seed(&booster_id).is_some(), E301_SEED_NOT_EXIST);
26 booster_info.assert_valid(&booster_id);
27
28 let mut config = self.data().config.get().unwrap();
29 require!(self.affected_farm_count(&booster_info) <= config.max_num_farms_per_booster,

E203_EXCEED_FARM_NUM_IN_BOOST);
30
31 config.booster_seeds.insert(booster_id.clone(), booster_info);
32 self.data_mut().config.set(&config);
33 }

Listing 2.5: contracts/boost-farming/src/booster.rs

Impact The time of claiming reward can influence the amount of received reward when the booster_info

is changed.

Suggestion I Notify the affected users to claim the reward timely once the booster_info is updated.

Feedback from the Project Client side would guide users to fresh their reward state if booster policy

changes. And in real production env, there is a very rare probability to modify booster policies.

2.2.4 Unfair Reward Distribution in Certain Situations

Status Confirmed

Introduced by Version 1

8

Description The reward to be distributed in each farm is deposited by administrator. If the administrator

does not deposit the reward in time (e.g., after the start time of the farm). The users may receive additional

reward.

For example, one farm is created and will be started on day N. The distribution time (i.e., distributed_at)

will also be set as day N when the farm is created. User A stakes on day N+9 while the reward is deposited

on day N+10, which means the reward is not deposited in time. Note that the status of the farm is Pending

on day N+9 and is Running on day N+10 after the reward is deposited. In this case, the reward of the farm

will not be updated on day N+9 as the farm is not running. After that, when user B stakes on day N+11, the

farm will be updated and the reward will be calculated based on the differences between the distribution

time (day N) and the current time (day N+11). In this case, user A can receive the reward for staking 11

days while the real staking time for user A is only 2 days.

155pub fn add_reward(&mut self, reward_token: &AccountId, amount: Balance) -> (Balance, u32) {
156 require!(self.terms.reward_token == reward_token.clone(), E404_UNMATCHED_REWARD_TOKEN);
157 if self.terms.start_at == 0 {
158 self.terms.start_at = nano_to_sec(env::block_timestamp());
159 self.distributed_at = env::block_timestamp();
160 }
161 self.total_reward += amount;
162 (self.total_reward, self.terms.start_at)
163 }

Listing 2.6: contracts/boost-farming/src/seed_farm.rs

119 pub fn update(&mut self, seed_power: Balance) {
120 let block_ts = env::block_timestamp();
121
122 self.internal_update_status(block_ts);
123
124 if block_ts <= self.distributed_at {
125 // already updated, skip
126 return;
127 }
128
129 match self.status.as_ref().unwrap() {
130 FarmStatus::Ended => {
131 self.distributed_at = block_ts;
132 },
133 FarmStatus::Running => {
134 let reward = std::cmp::min(
135 self.total_reward - self.distributed_reward,
136 u128_ratio(
137 self.terms.daily_reward,
138 u128::from(block_ts - self.distributed_at),
139 u128::from(NANOS_PER_DAY),
140),
141);
142 self.distributed_reward += reward;
143 if seed_power > 0 {
144 self.rps = self.rps + BigDecimal::from(reward).div_u128(seed_power);
145 } else {

9

146 self.amount_of_beneficiary += reward;
147 }
148 self.distributed_at = block_ts;
149 self.internal_update_status(block_ts);
150 },
151 _ => {},
152 }
153 }

Listing 2.7: contracts/boost-farming/src/seed_farm.rs

Impact User can receive additional reward under certain situations.

Suggestion I Add reward in time.

Feedback from the Project Noted, Although it is very rare to happen, we would consider to improve

related logic in the future.

2.3 Additional Recommendation

2.3.1 Improved Sanity Checks for System Parameters

Status Fixed in Version 2

Introduced by Version 1

Description The slash_rate may be larger than the BP_DENOM. In this case, the amount of the slashed

seed is larger than the original locked amount, which is unfair for users.

49 #[payable]
50 pub fn modify_default_slash_rate(&mut self, slash_rate: u32) {
51 assert_one_yocto();
52 require!(self.is_owner_or_operators(), E002_NOT_ALLOWED);
53 require!(self.data().state == RunningState::Running, E004_CONTRACT_PAUSED);
54
55 let mut config = self.data().config.get().unwrap();
56 config.seed_slash_rate = slash_rate;
57 self.data_mut().config.set(&config);
58 }

Listing 2.8: contracts/boost-farming/src/management.rs

Suggestion I Add the check to make sure the slash_rate is smaller than the BP_DENOM.

2.3.2 Improved Sanity Checks When Removing Operators

Status Fixed in Version 2

Introduced by Version 1

Description The owner of the protocol can remove operators via the function remove_operators. How-

ever, the existence of operators is not checked. In this case, if the operator does not exist, the program

will not panic, which may mislead the owner and bring unexpected impact.

10

77 #[payable]
78 pub fn remove_operators(&mut self, operators: Vec<AccountId>) {
79 assert_one_yocto();
80 self.assert_owner();
81 for operator in operators {
82 self.data_mut().operators.remove(&operator);
83 }
84 }

Listing 2.9: contracts/boost-farming/src/owner.rs

Suggestion I Check the return value of function remove.

2.3.3 Potential Elastic Supply Token Problem

Status Confirmed

Introduced by Version 1

Description Elastic supply tokens could dynamically adjust their price, supply, user’s balance, etc. For

example, inflation tokens, deflation tokens, rebasing tokens, and so forth. In the current implementation of

protocol, elastic supply tokens are not supported. If the token is a deflation token, there will be a difference

between the recorded amount of transferred tokens to this smart contract (as a parameter of function

ft_on_ transfer) and the actual number of transferred tokens (the token smart contract itself). That’s

because of a small number of tokens will be burned by the token smart contract.

This inconsistency can lead to security impacts for the operations based on the transferred amount of

tokens instead of the actual received amount of tokens.

Suggestion I Do not add elastic supply tokens into the whitelist.

Feedback from the Project Noted, we would be very careful on tokens when creating farms.

2.3.4 Improper Attached Gas

Status Fixed in Version 2

Introduced by Version 1

Description There is no check on whether attached_gas is enough for executing function migrate.

117#[no_mangle]
118 pub fn upgrade() {
119 env::setup_panic_hook();
120 let contract: Contract = env::state_read().expect("ERR_CONTRACT_IS_NOT_INITIALIZED");
121 contract.assert_owner();
122 let current_id = env::current_account_id().as_bytes().to_vec();
123 let method_name = "migrate".as_bytes().to_vec();
124 unsafe {
125 // Load input (wasm code) into register 0.
126 sys::input(0);
127 // Create batch action promise for the current contract ID
128 let promise_id =
129 sys::promise_batch_create(current_id.len() as _, current_id.as_ptr() as _);
130 // 1st action in the Tx: "deploy contract" (code is taken from register 0)

11

131 sys::promise_batch_action_deploy_contract(promise_id, u64::MAX as _, 0);
132 // 2nd action in the Tx: call this_contract.migrate() with remaining gas
133 let attached_gas = env::prepaid_gas() - env::used_gas() - GAS_FOR_MIGRATE_CALL;
134 sys::promise_batch_action_function_call(
135 promise_id,
136 method_name.len() as _,
137 method_name.as_ptr() as _,
138 0 as _,
139 0 as _,
140 0 as _,
141 attached_gas.0,
142);
143 }
144 }

Listing 2.10: contracts/boost-farming/src/owner.rs

Suggestion I Check whether attached_gas is larger than a specified value.

2.3.5 Potential Centralization Problem

Status Confirmed

Introduced by Version 1

Description This project has potential centralization problems. The project owner needs to ensure the

security of the private key of ContractData.owner_id and use a multi-signature scheme to reduce the risk

of single-point failure.

Suggestion I It is recommended to introduce a decentralization design in the contract, such as a multi-

signature or a public DAO.

Feedback from the Project The owner of this contract would be a DAO.

12

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Lost of Farmer’s Reward

	2.2 DeFi Security
	2.2.1 No Privileged Function for Withdrawal of Beneficiary
	2.2.2 Improper Allowed State for System Configuration
	2.2.3 User Controllable Reward with the Change of booster_info
	2.2.4 Unfair Reward Distribution in Certain Situations

	2.3 Additional Recommendation
	2.3.1 Improved Sanity Checks for System Parameters
	2.3.2 Improved Sanity Checks When Removing Operators
	2.3.3 Potential Elastic Supply Token Problem
	2.3.4 Improper Attached Gas
	2.3.5 Potential Centralization Problem

		2022-07-29T11:07:23+0800
	BlockSec Audit Team

