4

4%/ BlockSec

Security Audit Report for Ref-ve

Date: July 14, 2022
Version: 1.0

Contact: contact@blocksec.com

Digitally signed by
BIOCkseC BlockSec Audit Team
. Date: 2022.07.25
AUd It Tea m 15:19:50 +08'00"

mailto:contact@blocksec.com

1

Contents

Introduction
1.1 About Target Contracts
1.2 Disclaimer e e
1.3 Procedure of Auditing e
1.3.1 Software Security
1.3.2 DeFiSecurity e
1.3.3 NFT Security o e
1.3.4 Additional Recommendation
1.4 Security Model e
Findings
2.1 Software Security
2.1.1 Unlimited Account Registeration without Storage Fees
2.1.2 Unlimited Length of Proposal.description
2.2 DeFiSecurity e
221 UsersRewardmaybelost.
2.2.2 Unreasonable Duration of Proposal,
2.3 Additional Recommendation
2.3.1 Unused Function
2.3.2 Lack of Checking on the Locking Duration
2.3.3 Lackofassert one_yocto()
2.3.4 Lackofassert_ one_yocto()
2.3.5 Lack of Checking onthe Gas Usedby migrate
2.3.6 Potential Centralization Problem
2.3.7 Potential Elastic Supply Token Problem
24 NOtes. e
2.4.1 Action::VoteNonsenseisinvalid

W W W MDD NN = = -

© 0 N O o »

Report Manifest

Item Description
Client Ref Finance
Target Ref-ve

Version History

Version

Date

Description

1.0

July 14, 2022

First Release

About BlockSec
laborates with leading DeFi projects to secure their products. The team is founded by top-notch security
researchers and experienced experts from both academia and industry. They have published multiple
blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-
tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information | Description

Type Smart Contract

Language Rust

Approach Semi-automatic and manual verification

The repository that has been audited includes ref-ve 1.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.
If there are new issues, we will continue this process. The commit SHA values during the audit are shown
in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well as new
codes (in the following versions) to fix issues in the audit report.

Project Commit SHA
Version 1 1£d6dfe2160590bab0f8e9ccf17c4dcce2c42£33
Version 2 87491b5eb55909f98ed3152fedaaba65592d779f

ref-ve

Note that, we did NOT audit all the modules in the repository. The modules covered by this audit
report include ref-ve folder contract only. Specifically, the files covered in this audit include:

- src/account.rs

- src/actions_of _account.rs

- src/actions_of_proposal.rs

- src/actions_of reward.rs

- src/errors.rs

- src/events.rs

- src/lib.rs

- src/management.rs

- src/owner.rs

- src/proposals_action.rs

- src/proposals_incentive.rs

- src/proposals.rs

- src/storage_impl.rs

- src/token_receiver.rs

- src/utils.rs

- src/views.rs

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not
consider, and should not be interpreted as considering or having any bearing on, the potential economics

thttps://github.com/ref-finance/ref-ve

g\,\l BlockSec

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or
other asset.

This audit report is not an endorsement of any particular project or team, and the report does not
guarantee the security of any particular project. This audit does not give any warranties on discovering
all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit cannot be considered comprehensive, we always
recommend proceeding with independent audits and a public bug bounty program to ensure the security
of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,
the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the
computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then
manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-
tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).
We also manually analyze possible attack scenarios with independent auditors to cross-check the
result.

- Recommendation We provide some useful advice to developers from the perspective of good
programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

+* Reentrancy

* DoS

* Access control

+ Data handling and data flow

+ Exception handling

+ Untrusted external call and control flow
x Initialization consistency

+ Events operation

+ Error-prone randomness

+ |Improper use of the proxy system

1.3.2 DeFi Security

* Semantic consistency
* Functionality consistency
* Access control

’Q\,\l BlockSec

*

Business logic

Token operation
Emergency mechanism
Oracle security
Whitelist and blacklist
Economic impact
Batch transfer

*

*

*

*

*

*

1.3.3 NFT Security

+ Duplicated item
+ Verification of the token receiver
x Off-chain metadata security

1.3.4 Additional Recommendation

+ Gas optimization

x Code quality and style
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing
process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry
and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.
The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to
estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact
is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-
tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

High

Impact

Low

High Low
Likelihood

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

g‘) BlockSec

Accordingly, the severity measured in this report are classified into three categories: High, Medium,
Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk
cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

Chapter 2 Findings

In total, we find four potential issues. We have seven recommendations and one note.

- High Risk: 0

- Medium Risk: 2

- Low Risk: 2

- Recommendations: 7

- Notes: 1

ID | Severity | Description Category Status

1 Medium Unlimited Account Registeration without Stor- Software Security | Fixed

age Fees

2 Medium | Unlimited Length of Proposal.description Software Security | Fixed

3 Low User’s Reward may be Lost DeFi Security Fixed

4 Low Unreasonable Duration of Proposal DeFi Security Fixed

5 - Unused Function Recommendation | Fixed

6 - Lack of Checking on the Locking Duration Recommendation | Fixed

7 - Lack of assert_one_yocto() Recommendation | Fixed

8 - Lack of assert_one_yocto() Recommendation | Fixed

9 - Lack of Checking on the Gas Used by migrate | Recommendation | Fixed

10 | - Potential Centralization Problem Recommendation | Confirmed

11 | - Potential Elastic Supply Token Problem Recommendation | Confirmed
112 | - | Action::VoteNonsense is Invalid | Note | Confirmed |

The details are provided in the following sections.

2.1 Software Security

2.1.1 Unlimited Account Registeration without Storage Fees

Status Fixed in Version 2

Introduced by Version 1

Description Account can be registered with function internal _unwrap_or_default_account in function
lock_lpt(line 101) or append_lpt(line 132) without a storage deposit. Meanwhile, mft_on_transfer does
not limit the locking amount, which allows an account registration with very small amount of (e.g., 1 yocto)

LP tokens locked.

95
96
97
98
99
100
101
102
103
104

) o

require! (duration_sec >=

require! (duration_sec <=

pub fn lock_1lpt(
&mut self,
account_id: &AccountId,
amount: Balance,

duration_sec: u32,

let config = self.internal_config();
config.min_locking_duration_sec, E302_INVALID_DURATION) ;
config.max_locking_duration_sec, E302_INVALID_DURATION);

let mut account = self.internal_unwrap_or_default_account(account_id) ;

'g‘,\l BlockSec

105

106 let increased_ve_lpt = account.lock_lpt(amount, duration_sec, &config, self.data().
lptoken_decimals) ;

107 require! (increased_ve_lpt > 0, E101_INSUFFICIENT_BALANCE) ;

108 self.mint_love_token(account_id, increased_ve_lpt);

109

110 self .data_mut () .cur_lock_lpt += amount;

111 self .data_mut () .cur_total_ve_lpt += increased_ve_lpt;

112

113 self .update_impacted_proposals (&mut account, increased_ve_lpt, true);

114

115 self.internal_set_account(account_id, account);

116

117 Event: :LptLock {

118 caller_id: account_id,

119 deposit_amount: &U128(amount),

120 increased_ve_lpt: &U128(increased_ve_lpt),

121 duration: duration_sec,

122 }

123 cemit();

124 }

125

126 pub fn append_lpt(

127 &mut self,

128 account_id: &Accountld,

129 amount: Balance,

130 append_duration_sec: u32,

131) {

132 let mut account = self.internal_unwrap_or_default_account(account_id);

133 require! (account.unlock_timestamp != O, E105_ACC_NOT_LOCKED) ;

134 let timestamp = env::block_timestamp();

135 let duration_sec = nano_to_sec(account.unlock_timestamp) - nano_to_sec(timestamp) +
append_duration_sec;

136

137 let config = self.internal_config();

138 require! (duration_sec >= config.min_locking_duration_sec, E302_INVALID_DURATION);

139 require! (duration_sec <= config.max_locking_duration_sec, E302_INVALID_DURATION);

140

141 let increased_ve_lpt = account.lock_lpt(amount, duration_sec, &config, self.data().
lptoken_decimals);

142 require! (increased_ve_lpt > 0, E101_INSUFFICIENT_BALANCE);

143 self .mint_love_token(account_id, increased_ve_lpt);

144

145 self .data_mut () .cur_lock_lpt += amount;

146 self.data_mut().cur_total_ve_lpt += increased_ve_lpt;

147

148 self .update_impacted_proposals(&mut account, increased_ve_lpt, true);

149

150 self.internal_set_account (account_id, account);

151

152 Event: :LptAppend {

153 caller_id: account_id,

154 deposit_amount: &U128(amount),

@V BlockSec

‘155 increased_ve_lpt: &U128(increased_ve_lpt),
‘156 duration: duration_sec,

157 }

158 cemit();

159}

\

Listing 2.1: contracts/ref-ve/src/token_receiver.rs

Impact The contract is vulnerable to DoS attack. Malicious users can run out of storage by registering
numerous users with function lock_1pt.

Suggestionl Change internal_unwrap_or_default_account t0 internal_unwrap_account to make sure
the users are registered before locking/appending Ipt.

Suggestion Il Limit the minimum locking amount in function mft_on_transfer.

2.1.2 Unlimited Length of Proposal.description

Status Fixed in Version 2
Introduced by Version 1

Description There is no check on the length of Proposal.description when creating proposals.

B #[payable]

6 pub fn create_proposal(

7 &mut self,

8 kind: ProposalKind,

9 description: String,

10 start_at: u32,

11 duration_sec: u32,

12) > u32 {

13 let proposer = env::predecessor_account_id();

14 require! (self.data() .whitelisted_accounts.contains (&proposer) , E002_NOT_ALLOWED) ;

15

16 self.internal_unwrap_account (&proposer) ;

17

18 let config = self.internal_config();

19

20 require! (start_at - nano_to_sec(env::block_timestamp()) >= config.
min_proposal_start_vote_offset_sec, E402_INVALID_START_TIME);

21

22 let votes: Vec<VoteInfo> = match &kind {

23 ProposalKind: :FarmingReward{ farm_list, .. } => {

24 vec! [Default::default(); farm_list.len()]

25 Fo

26 ProposalKind: :Poll{ options, .. } => {

27 vec! [Default::default(); options.len()]

28 To

29 ProposalKind: :Common{ .. } => {

30 vec! [Default: :default(); 3]

31 }

32 }

33

34 let id = self.data().last_proposal_id;

@V BlockSec

35 let proposal = Proposal{

36 id,

37 description,

38 proposer: proposer.clone(),

39 kind: kind.clone(),

40 votes,

41 ve_amount_at_last_action: self.data().cur_total_ve_lpt,
42 incentive: HashMap::new(),

43 start_at: to_nano(start_at),

44 end_at: to_nano(start_at + duration_sec),
45 participants: O,

46 status: None,

47 is_nonsense: None

48 };

49 self.data_mut () .proposals.insert(&id, &proposal.into());
50

51 Event: :ProposalCreate {

52 proposer_id: &proposer,

53 proposal_id: id,

54 kind: &format! ("{:?7}", kind),

55 start_at: to_nano(start_at),

56 duration_sec

57 }

58 cemit();

59

60 self.data_mut().last_proposal_id += 1;

61 id

62 }

Listing 2.2: contracts/ref-ve/src/actions_of_proposal.rs

Impact The contract is vulnerable to DoS attack. Malicious users can run out of storage by creating
proposals with rather long description.

Suggestion | Limit the length of Proposal.description when creating proposals.

2.2 DeFi Security

2.2.1 User’s Reward may be Lost

Status Fixed! in Version 2
Introduced by Version 1

Description When the PromiseResult is fail, there is no check on whether sender_id is registered. Func-
tion callback_post_withdraw_reward Will panic if sender_id is not registered (line 78).

[
‘ 53 #[private]

‘ 54 pub fn callback_post_withdraw_reward(
‘ 55 gmut self,

56 token_id: AccountId,
57 sender_id: AccountId,

IThis issue is fixed by recording the log and then manually distributing the rewards

@V BlockSec

58 amount: U128,

59) o

60 require! (

61 env: :promise_results_count() == 1,

62 EOO01_PROMISE_RESULT_COUNT_INVALID

63 Vg

64 let amount: Balance = amount.into();

65 match env::promise_result(0) {

66 PromiseResult: :NotReady => unreachable!(),

67 PromiseResult::Successful (_) => {

68 Event: :RewardWithdraw {

69 caller_id: &sender_id,

70 token_id: &token_id,

71 withdraw_amount: &U128(amount),

72 success: true,

73 }

74 .emit ()

75 }

76 PromiseResult::Failed => {

77 // This reverts the changes from withdraw function.
78 let mut account = self.internal_unwrap_account (&sender_id);
79 account.add_rewards (&HashMap: :from([(token_id.clone(), amount)]));
80 self.internal_set_account (&sender_id, account);
81

82 Event: :RewardWithdraw {

83 caller_id: &sender_id,

84 token_id: &token_id,

85 withdraw_amount: &U128(amount),

86 success: false,

87 }

88 .emit();

89 }

90 }

91 ¥

Listing 2.3: contracts/ref-ve/src/actions_of_reward.rs

Impact If the PromiseResult is checked as failed and sender_id is unregistered, all rewards of this ac-
count(sender_id) will be lost.

Suggestion | It is suggested to check whether sender_id exists. If not, record the rewards of the
sender_id in the lostfound.

2.2.2 Unreasonable Duration of Proposal

Status Fixed in Version 2
Introduced by Version 1

Description There is no limit check on the proposal’s duration.

[
‘) #[payable]

‘ 6 pub fn create_proposal(
‘ 7 gmut self,

AV BlockSec

8 kind: ProposalKind,

9 description: String,

10 start_at: u32,

11 duration_sec: u32,

12) > u32 {

13 let proposer = env::predecessor_account_id();

14 require! (self.data() .whitelisted_accounts.contains (&proposer) , E002_NOT_ALLOWED) ;
15

16 self.internal_unwrap_account (&proposer) ;

17

18 let config = self.internal_config();

19

20 require! (start_at - nano_to_sec(env::block_timestamp()) >= config.

min_proposal_start_vote_offset_sec, E402_INVALID_START_TIME);

21

22 let votes: Vec<VoteInfo> = match &kind {

23 ProposalKind: :FarmingReward{ farm_list, .. } => {
24 vec! [Default::default(); farm_list.len()]
25 Fo

26 ProposalKind: :Poll{ options, .. } => {

27 vec! [Default::default(); options.len()]
28 Do

29 ProposalKind: :Common{ .. } => {

30 vec! [Default::default(); 3]

31 }

32 };

33

34 let id = self.data().last_proposal_id;

35 let proposal = Proposal{

36 id,

37 description,

38 proposer: proposer.clone(),

39 kind: kind.clone(),

40 votes,

41 ve_amount_at_last_action: self.data().cur_total_ve_lpt,
42 incentive: HashMap::new(),

43 start_at: to_nano(start_at),

44 end_at: to_nano(start_at + duration_sec),

45 participants: O,

46 status: None,

47 is_nonsense: None

48 1

49 self .data_mut () .proposals.insert(&id, &proposal.into());
50

51 Event: :ProposalCreate {

52 proposer_id: &proposer,

53 proposal_id: id,

54 kind: &format! ("{:?}", kind),

55 start_at: to_nano(start_at),

56 duration_sec

57 }

58 cemit();

59

10

@V BlockSec

‘ 60 self.data_mut().last_proposal_id += 1; ‘
- 61 id |
62} |
L |

Listing 2.4: contracts/ref-ve/src/actions_of_proposal.rs

Impact The duration created for the voting period can be rather short (e.g., 1 block).

Suggestion | Limit the minimum duration seconds when creating proposals.

2.3 Additional Recommendation

2.3.1 Unused Function

Status Fixed in Version 2
Introduced by Version 1

Description Function internal_set_proposal is unused.

124 pub fn internal_set_proposal(&mut self, proposal_id: u32, proposal: Proposal) {
125 self.data_mut () .proposals.insert(&proposal_id, &proposal.into());
126 }

Listing 2.5: contracts/ref-ve/src/proposals.rs

Suggestionl Remove the unused functions.

2.3.2 Lack of Checking on the Locking Duration

Status Fixed in Version 2
Introduced by Version 1

Description Thereis no check on whethermin_locking duration_sec is smallerthan max_locking_dura-
tion_sec. If owner or operators accidentally setmax_locking_duration_sec to smallerthanmin_locking_du-
ration_sec, then users cannot lock IpTokens.

54 #[payable]

55 pub fn modify_locking_policy(&mut self, min_duration: DurationSec, max_duration: DurationSec,
max_ratio: u32) {

56 assert_one_yocto();

57 require! (self.is_owner_or_operators(), E002_NOT_ALLOWED) ;

58

59 let mut config = self.data().config.get().unwrap();

60 config.min_locking_duration_sec = min_duration;

61 config.max_locking_duration_sec = max_duration;

62 config.max_locking_multiplier = max_ratio;

63

64 config.assert_valid();

65 self.data_mut () .config.set(&config) ;

66 }

Listing 2.6: contracts/ref-ve/src/management.rs

11

@V BlockSec

83
84
85
86
87
88

89}

82impl Config {
pub fn assert_valid(&self) {

require! (
self .max_locking multiplier > MIN_LOCKING_REWARD_RATIO,
E301_INVALID_RATIO

)8

Listing 2.7: contracts/ref-ve/src/lib.rs

Suggestion | It is recommended to check whether min_locking_duration_sec is smaller than

max_locking_duration_sec in function assert_valid.

2.3.3 Lack of assert_one_yocto()

Status Fixed in Version 2

Introduced by Version 1

Description Function create_proposal is a sensitive operation and function assert_one_yocto () should

be added in function create_proposal for 2FA.

5)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33

#[payable]

pub fn create_proposal(

&mut self,

kind: ProposalKind,
description: String,
start_at: u32,

duration_sec: u32,

) > u32 {

let proposer = env::predecessor_account_id();
require! (self.data() .whitelisted_accounts.contains(&proposer) , E002_NOT_ALLOWED) ;

self.internal_unwrap_account (&proposer) ;

let config = self.internal_config();

require! (start_at - nano_to_sec(env::block_timestamp()) >= config.
min_proposal_start_vote_offset_sec, E402_INVALID_START_TIME);

let votes: Vec<VoteInfo> = match &kind {

ProposalKind: :FarmingReward{ farm_list, .. } => {
vec! [Default::default(); farm_list.len()]

Fo

ProposalKind: :Poll{ options, .. } => {
vec! [Default::default(); options.len()]

g

ProposalKind: :Common{ .. } => {
vec! [Default::default(); 3]

12

@V BlockSec

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

let id = self.data().last_proposal_id;
let proposal = Proposal{
id,
description,
proposer: proposer.clone(),
kind: kind.clone(),
votes,
ve_amount_at_last_action: self.data().cur_total_ve_lpt,
incentive: HashMap::new(),
start_at: to_nano(start_at),
end_at: to_nano(start_at + duration_sec),
participants: O,
status: None,
is_nonsense: None
};
self.data_mut () .proposals.insert(&id, &proposal.into());

Event: :ProposalCreate {
proposer_id: &proposer,
proposal_id: id,
kind: &format!("{:7}", kind),
start_at: to_nano(start_at),
duration_sec

}

.emit();

self.data_mut().last_proposal_id += 1;
id

Listing 2.8: contracts/ref-ve/src/actions_of_proposal.rs

Suggestion | Add assert_one_yocto() in function create_proposal.

2.3.4 Lack of assert_one_yocto()

Status Fixed in Version 2

Introduced by Version 1

Description Function action_proposal is a sensitive operation and function assert_one_yocto () should

be added in function action_proposal for 2FA.

99

100
101
102
103
104
105
106
107
108

U128 {

let voter = env::predecessor_account_id();

pub fn action_proposal (&mut self, proposal_id: u32, action: Action, memo: Option<String>) ->

let ve_lpt_amount = self.internal_account_vote(&voter, proposal_id, &action) ;

self.internal_append_vote(proposal_id, &action, ve_lpt_amount);

if let Some(memo) = memo {

log! ("Memo: {}", memo) ;

13

'Q‘,\l BlockSec

109
110
111
112
113
114
115
116
117
118

Event: :ActionProposal {

voter_id: &voter,

proposal_id,

action: &format!("{:7}", action)
}

.emit();

ve_lpt_amount.into()

Listing 2.9: contracts/ref-ve/src/actions_of_proposal.rs

Suggestion| Add assert_one_yocto() in function action_proposal.

2.3.5 Lack of Checking on the Gas Used by migrate

Status Fixed in Version 2

Introduced by Version 1

Description There is no check on whether attached_gas is enough for executing function migrate.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

use

use

use

/17
pub

/17
/17

54 #[cfg(target_arch = "wasm32")]
55mod upgrade {

near_sdk: :Gas;

near_sys as S8SYyS;

super: :*;

Gas for calling migration call.
const GAS_FOR_MIGRATE_CALL: Gas = Gas(5_000_000_000_000) ;

Self upgrade and call migrate, optimizes gas by not loading into memory the code.

Takes as input non serialized set of bytes of the code.

#[no_mangle]

pub

fn upgrade() {
env: :setup_panic_hook();
let contract: Contract = env::state_read().expect("ERR_CONTRACT_IS_NOT_INITIALIZED");
contract.assert_owner();
let current_id = env::current_account_id().as_bytes().to_vec();
let method_name = "migrate".as_bytes().to_vec();
unsafe {
// Load input (wasm code) into register O.
sys: :input (0) ;
// Create batch action promise for the current contract ID
let promise_id =
sys::promise_batch_create(current_id.len() as _, current_id.as_ptr() as _);
// 1st action in the Tx: "deploy contract" (code is taken from register 0)
sys::promise_batch_action_deploy_contract(promise_id, u64::MAX as _, 0);
// 2nd action in the Tx: call this_contract.migrate() with remaining gas
let attached_gas = env::prepaid_gas() - env::used_gas() - GAS_FOR_MIGRATE_CALL;
sys: :promise_batch_action_function_call(

promise_id,

14

’g\,\l BlockSec

85 method_name.len() as _,
86 method_name.as_ptr() as _,
87 0 as _,

88 0 as _,

89 0 as _,

90 attached_gas.O,

91);

92 }

93 }

94}

Listing 2.10: contracts/ref-ve/src/owner.rs

Suggestion | Check whether attached_gas is larger than a specified value.

2.3.6 Potential Centralization Problem

Status Confirmed
Introduced by Version 1

Description This project has potential centralization problems. The project owner needs to ensure the
security of the private key of ContractData.owner_id and use a multi-signature scheme to reduce the risk
of single-point failure.

Suggestion | It is recommended to introduce a decentralization design in the contract, such as a multi-
signature or a public DAO.

Feedback from the Project Yes, the owner is a DAO. That’s why we import operator roles. It's a trade
off result between security and effiecency

2.3.7 Potential Elastic Supply Token Problem

Status Confirmed
Introduced by Version 1

Description Elastic supply tokens (e.g., deflation tokens) could dynamically adjust the supply or user’s
balance. For example, if the token is a deflation token, there will be a difference between the transferred
amount of tokens and the actual received amount of tokens.

This inconsistency can lead to security impacts for the operations based on the transferred amount of
tokens instead of the actual received amount of tokens.

Suggestion 1 Do not append the elastic supply tokens into the whitelist.

Feedback from the Project Yes, we don'’t support elastic tokens for now.

2.4 Notes

2.4.1 Action::VoteNonsense is invalid

Status Confirmed

Introduced by Version 1

15

’g‘,\l BlockSec

Description If users vote t0 Action: :VoteNonsense, E201_INVALID_VOTE is triggered(line 83).

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

pub fn internal_append_vote(

&mut self,
proposal_id: u32,
action: &Action,

amount: Balance,

let mut proposal = self.internal_unwrap_proposal (proposal_id) ;
require! (action != &Action::VoteNonsense, E201_INVALID_VOTE);

// check proposal is inprogress
match proposal.status {
Some (ProposalStatus: : InProgress) => {
// update proposal result
proposal.update_votes(
action,
amount,
true
)3
proposal.ve_amount_at_last_action = self.data().cur_total_ve_lpt;
proposal.votes[action.get_index()].participants += 1;

proposal.participants += 1;

self .data_mut ()
.proposals
.insert (&proposal_id, &proposal.into());
To
_ => env::panic_str(E205_NOT_VOTABLE)

Listing 2.11: contracts/ref-ve/src/proposals_action.rs

Feedback from the Project At the beginning of the design, it was designed to support veToken hold-
ers to create proposals. A security deposit is required in case malicious proposals. The vote ratio of
Action::VoteNonsense IS used to determine whether to confiscate the security deposits. However, at

this stage, only whitelisted users are allowed to create proposals. In this case, this option is temporarily

unavailable.

16

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Unlimited Account Registeration without Storage Fees
	2.1.2 Unlimited Length of Proposal.description

	2.2 DeFi Security
	2.2.1 User’s Reward may be Lost
	2.2.2 Unreasonable Duration of Proposal

	2.3 Additional Recommendation
	2.3.1 Unused Function
	2.3.2 Lack of Checking on the Locking Duration
	2.3.3 Lack of assert_one_yocto()
	2.3.4 Lack of assert_one_yocto()
	2.3.5 Lack of Checking on the Gas Used by migrate
	2.3.6 Potential Centralization Problem
	2.3.7 Potential Elastic Supply Token Problem

	2.4 Notes
	2.4.1 Action::VoteNonsense is invalid

		2022-07-25T15:19:50+0800
	BlockSec Audit Team

